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ABSTRACT 

Today, 3D printing technology is becoming a technology 

that continues to be widely used, it is used in many areas 

in the health sector, aviation and industry. It is possible to 

get both cheap and practical prints. However, 3-D 

printers can also produce faulty parts from time to time, 

and there is no common system to track these parts. Our 

aim in this project is to perform real-time image 

processing with the camera we attach to the 5Dof robot 

manipulator we designed, and to monitor our 3D printer 

during printing and detect defects with the artificial 

intelligence algorithms we wrote. In this study, we bring 

together today's most critical fields such as robotics, 

software (artificial intelligence-deep learning), 3-D printer. 

 

At the beginning of this project, we first made kinematic 

analyzes of the Robot manipulator we designed using 

the Denavit Hartenberg table method and calculated the 

trejacty for smooth movement and observed our results 

on solidwork. After finishing the robot manipulator 

calculations and montage, we started to set up the 

Algorithm. 

 

First observation was defect detection on printed objects 

by using Image Processing, OpenCV and Python. We 

detected defects with high accuracy by using intersection 

over union, contour differences, and area differences. 

For the second approach we used Convolutional Neural 

Networks, Yolov5 for real time defect detection during 

printing objects from 3d printer. Observed results and 

graphical represenations by using Tensorflow. 

Then we were able to compare results of the image 

processing and results of the deep learnign algorithms. 

 

Smart 3D Printer for Detecting Printing Defects by using 

Image Processing Deep Learning and Robot Manipulator  

PURPOSE OF THE STUDY RESULTS AND DISCUSSION  
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•    

In this study, our purpose is,  real-time image processing 

by using an artificial neural network algorithms which are 

wroten by us. With the camera we attach to the 5Dof 

robot manipulator we have designed, we aim to monitor 

our 3-D printer during the printing  and to detect errors 

with the algorithm that we have wrote by performing 

real-time image processing. 

Our aim in this project is to perform real-time image 

processing with the camera we attach to the 5 Dof robot 

manipulator we designed, and to monitor our 3D printing 

and detect defects with the image processing and deep 

learning algorithms that we have developed. 

EXPERIMENTAL SETUP 

INTRODUCTION 

Robot Manipulator 
Kinematics Analysis  
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Results of Image Processing and OpenCV 

Results of  Convolutional Neural Networks and YOLOv5 

https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV 

https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D 

 

 

Deep Learning 

Image Processing Algorithms 

 • Preprocessing  • Contour detection  • Contour matching 

 • Defect detection • Feature extraction 

Robot Manipulator 

TRAINING DATA 

%85 of the photos for training, %8 of the photos for validation, %7 of 

the photos for testing 

PREPROCESSING 

Auto-Orient: Applied 

Resize: Stretch to 416x416 

AUGMENTATIONS 

Outputs per training example: 3 

Flip: Horizontal 

90° Rotate: Clockwise, Counter-Clockwise 

Rotation: Between -45° and +45° 

Grayscale: Apply to 10% of images 

Annotation Group: edgewarping-stringing-spaghetti 

 

To train our detector we take the following steps: 

• Install YOLOv5 dependencies 

• Download Custom YOLOv5 Defect Detection Data 

• Define YOLOv5 Model Configuration and Architecture 

• Train a custom YOLOv5 Detector 

• Evaluate YOLOv5 performance 

• Visualize YOLOv5 training data 

• Run YOLOv5 Inference on test images 

• Export Saved YOLOv5 Weights for Future Inference 

We collected data photos from printed objects.To start off with 

YOLO v5 we first clone the YOLO v5 repository and install 

dependencies. This set up our programming environment to be 

ready to running defect detection training and inference 

commands. The GPU will allow us to accelerate training time. 

Colab comes preinstalled with torch and cuda. We downloaded 

custom defect detection data in YOLOv5 format from Roboflow. 

Once we have labeled data, to moved our data into Roboflow. 

We choose different preprocessing and augmentation steps. 

The export creates a YOLO v5 .yaml file 

called data.yaml specifying the location of a YOLO 

v5 images folder, a YOLO v5 labels folder, and information on 

our custom classes.  Next, we write a model configuration file 

for our custom detector. With 

our data.yaml and custom_yolov5s.yaml files ready, we started 

with training. During training, the YOLOv5 training pipeline 

creates batches of training data with augmentations. We can 

visualize the training data ground truth as well as the 

augmented training data. YOLO v5 is lightweight to use 

because it trains quickly, inferences fast, and performs well. 

--img 416 --batch 16 --epochs 150 

150 epochs completed in 0.135 hours.  

Model summary: Model summary: 270 layers, 7027720 

parameters, 7027720 gradients, 15.9 GFLOPs 

                Class     Images     Labels          P          R     

mAP@.5 mAP@.5:.95: 100% 1/1 [00:00<00:00,  6.24it/s] 

!python detect.py --weights runs/train/exp/weights/best.pt --

img 416 --conf 0.1 --source {dataset.location}/test/images 

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, 

weight_decay=0.0005, warmup_epochs=3.0, 

warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, 

cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, 

anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, 

hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5,  

Training results: 

   33.7% mAP,  73.3% precision, 33.0% recall 
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Rectraction 

OUTPUTS OF PROGRAM 

Support is Missing 

Edge Warping 

https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV
https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV
https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV
https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D
https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D
https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D

