
Cansu TUNÇ

Mustafa OVALI

Onur SEVER

ABSTRACT

Today, 3D printing technology is becoming a technology

that continues to be widely used, it is used in many areas

in the health sector, aviation and industry. It is possible to

get both cheap and practical prints. However, 3-D

printers can also produce faulty parts from time to time,

and there is no common system to track these parts. Our

aim in this project is to perform real-time image

processing with the camera we attach to the 5Dof robot

manipulator we designed, and to monitor our 3D printer

during printing and detect defects with the artificial

intelligence algorithms we wrote. In this study, we bring

together today's most critical fields such as robotics,

software (artificial intelligence-deep learning), 3-D printer.

At the beginning of this project, we first made kinematic

analyzes of the Robot manipulator we designed using

the Denavit Hartenberg table method and calculated the

trejacty for smooth movement and observed our results

on solidwork. After finishing the robot manipulator

calculations and montage, we started to set up the

Algorithm.

First observation was defect detection on printed objects

by using Image Processing, OpenCV and Python. We

detected defects with high accuracy by using intersection

over union, contour differences, and area differences.

For the second approach we used Convolutional Neural

Networks, Yolov5 for real time defect detection during

printing objects from 3d printer. Observed results and

graphical represenations by using Tensorflow.

Then we were able to compare results of the image

processing and results of the deep learnign algorithms.

Smart 3D Printer for Detecting Printing Defects by using

Image Processing Deep Learning and Robot Manipulator

PURPOSE OF THE STUDY RESULTS AND DISCUSSION

Supervisor: Dr. Fatih Cemal Can

•

In this study, our purpose is, real-time image processing

by using an artificial neural network algorithms which are

wroten by us. With the camera we attach to the 5Dof

robot manipulator we have designed, we aim to monitor

our 3-D printer during the printing and to detect errors

with the algorithm that we have wrote by performing

real-time image processing.

Our aim in this project is to perform real-time image

processing with the camera we attach to the 5 Dof robot

manipulator we designed, and to monitor our 3D printing

and detect defects with the image processing and deep

learning algorithms that we have developed.

EXPERIMENTAL SETUP

INTRODUCTION

Robot Manipulator
Kinematics Analysis

REFERENCES

i a α 𝑆𝑖 θ

1 0 0 0 θ 1 𝑇1
0

2 0 𝜋
2 𝑆2 θ 2 𝑇2

1

3 𝑎3 0 0 θ 3 𝑇3
2

4 𝑎4 0 0 θ 4 𝑇4
3

5 𝑎5 −𝜋
2 0 θ 5 𝑇5

4

Denavit Hartenberg table

𝑇1
0 =

𝑐1
𝑠1
0
0

−𝑠1
𝑐1
0
0

0
0
1
0

0
0
0
1

 𝑇2
1 =

1
0
0
0

0
0
−1
0

0
1
0
0

0
0
0
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
𝑠2
1

𝑐2
𝑠2
0
0

−𝑠2
𝑐2
0
0

0
0
1
0

0
0
0
1

 𝑇3
2 =

1
0
0
0

0
1
0
0

0
0
1
0

𝑎3
0
0
1

𝑐3
𝑠3
0
0

−𝑠3
𝑐3
0
0

0
0
1
0

0
0
0
1

𝑇4
3 =

1
0
0
0

0
1
0
0

0
0
1
0

𝑎4
0
0
1

𝑐4
𝑠4
0
0

−𝑠4
𝑐4
0
0

0
0
1
0

0
0
0
1

 𝑇5
4 =

1
0
0
0

0
0
1
0

0
−1
0
0

0
0
0
1

1
0
0
0

0
1
0
0

0
0
1
0

𝑎5
0
0
1

𝑐5
𝑠5
0
0

−𝑠5
𝑐5
0
0

0
0
1
0

0
0
0
1

𝑇1
0 𝑥 𝑇2

1 𝑥 𝑇3
2 𝑥 𝑇4

3 𝑥 𝑇5
4 = 𝑇5

0

x

x

x

x

I

II

III

𝑡 = 𝑡𝑚1

𝑡 = 𝑡𝑚2

θ1
𝐼 𝑡𝑚1 = θ1

𝐼𝐼 𝑡𝑚1

θ1
𝐼 𝑡𝑚1 = θ1𝑚1 𝑡𝑚1

θ 1
𝐼 (𝑡𝑚1) = θ 1

𝐼𝐼(𝑡𝑚1)

θ 1
𝐼 (𝑡𝑚1) = θ 1

𝐼𝐼(𝑡𝑚1)

θ1
𝐼𝐼 𝑡𝑚2 = θ1

𝐼𝐼𝐼 𝑡𝑚2

θ1
𝐼𝐼 𝑡𝑚2 = θ1𝑚2 𝑡𝑚2

θ 1
𝐼𝐼(𝑡𝑚2) = θ 1

𝐼𝐼𝐼(𝑡𝑚2)

θ 1
𝐼𝐼(𝑡𝑚2) = θ 1

𝐼𝐼𝐼(𝑡𝑚2)

Design Of Robot
Manipulator θ1= 𝑎1𝑡

3 + 𝑏1𝑡
2 + 𝑐1𝑡 + 𝑑1

θ2= 𝑎2𝑡
3 + 𝑏2𝑡

2 + 𝑐2𝑡 + 𝑑2

θ3= 𝑎3𝑡
3 + 𝑏3𝑡

2 + 𝑐3𝑡 + 𝑑3

Results of Image Processing and OpenCV

Results of Convolutional Neural Networks and YOLOv5

https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV

https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D

Deep Learning

Image Processing Algorithms

 • Preprocessing • Contour detection • Contour matching

 • Defect detection • Feature extraction

Robot Manipulator

TRAINING DATA

%85 of the photos for training, %8 of the photos for validation, %7 of

the photos for testing

PREPROCESSING

Auto-Orient: Applied

Resize: Stretch to 416x416

AUGMENTATIONS

Outputs per training example: 3

Flip: Horizontal

90° Rotate: Clockwise, Counter-Clockwise

Rotation: Between -45° and +45°

Grayscale: Apply to 10% of images

Annotation Group: edgewarping-stringing-spaghetti

To train our detector we take the following steps:

• Install YOLOv5 dependencies

• Download Custom YOLOv5 Defect Detection Data

• Define YOLOv5 Model Configuration and Architecture

• Train a custom YOLOv5 Detector

• Evaluate YOLOv5 performance

• Visualize YOLOv5 training data

• Run YOLOv5 Inference on test images

• Export Saved YOLOv5 Weights for Future Inference

We collected data photos from printed objects.To start off with

YOLO v5 we first clone the YOLO v5 repository and install

dependencies. This set up our programming environment to be

ready to running defect detection training and inference

commands. The GPU will allow us to accelerate training time.

Colab comes preinstalled with torch and cuda. We downloaded

custom defect detection data in YOLOv5 format from Roboflow.

Once we have labeled data, to moved our data into Roboflow.

We choose different preprocessing and augmentation steps.

The export creates a YOLO v5 .yaml file

called data.yaml specifying the location of a YOLO

v5 images folder, a YOLO v5 labels folder, and information on

our custom classes. Next, we write a model configuration file

for our custom detector. With

our data.yaml and custom_yolov5s.yaml files ready, we started

with training. During training, the YOLOv5 training pipeline

creates batches of training data with augmentations. We can

visualize the training data ground truth as well as the

augmented training data. YOLO v5 is lightweight to use

because it trains quickly, inferences fast, and performs well.

--img 416 --batch 16 --epochs 150

150 epochs completed in 0.135 hours.

Model summary: Model summary: 270 layers, 7027720

parameters, 7027720 gradients, 15.9 GFLOPs

 Class Images Labels P R

mAP@.5 mAP@.5:.95: 100% 1/1 [00:00<00:00, 6.24it/s]

!python detect.py --weights runs/train/exp/weights/best.pt --

img 416 --conf 0.1 --source {dataset.location}/test/images

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937,

weight_decay=0.0005, warmup_epochs=3.0,

warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05,

cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2,

anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7,

hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5,

Training results:

 33.7% mAP, 73.3% precision, 33.0% recall

𝑑1= θ1𝑖
𝑐1=0

𝑎1𝑡𝑚1
3 + 𝑏1𝑡𝑚1

2 + 𝑐1𝑡𝑚1 + 𝑑1 = 𝑎2𝑡𝑚1
3 + 𝑏2𝑡𝑚1

2 +
𝑐2𝑡𝑚1 + 𝑑2

𝑎1𝑡𝑚1
3 + 𝑏1𝑡𝑚1

2 + 𝑐1𝑡𝑚1 + 𝑑1= θ1𝑚1

3𝑎1𝑡𝑚1
2 + 2𝑏1𝑡𝑚1 + 𝑐1= 3𝑎2𝑡𝑚1

2 + 2𝑏2𝑡𝑚1 + 𝑐2

6𝑎1𝑡𝑚1 + 2𝑏1= 6𝑎2𝑡𝑚1 + 2𝑏2

𝑎2𝑡𝑚2
3 + 𝑏2𝑡𝑚2

2 + 𝑐2𝑡𝑚2 + 𝑑2 = 𝑎3𝑡𝑚2
3 + 𝑏3𝑡𝑚2

2 +
𝑐3𝑡𝑚2 + 𝑑3

𝑎2𝑡𝑚2
3 + 𝑏2𝑡𝑚2

2 + 𝑐2𝑡𝑚2 + 𝑑2= θ1𝑚2

3𝑎2𝑡𝑚2
2 + 2𝑏2𝑡𝑚2 + 𝑐2= 3𝑎3𝑡𝑚2

2 + 2𝑏3𝑡𝑚2 + 𝑐3

6𝑎2𝑡𝑚2 + 2𝑏2= 6𝑎3𝑡𝑚2 + 2𝑏3

𝑎3𝑡𝑓
3 + 𝑏3𝑡𝑓

2 + 𝑐3𝑡𝑓 + 𝑑3 = θ1𝑓

𝑑3

Rectraction

OUTPUTS OF PROGRAM

Support is Missing

Edge Warping

https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV
https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV
https://drive.google.com/drive/u/0/folders/1znV034cRwYnKdD1CSx-tw5pNIVaZnvIV
https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D
https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D
https://drive.google.com/drive/folders/1ocfsyLbK9hZSZ_zu5OQy1_6I-vVmwg9D

